Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Database
Language
Document Type
Year range
1.
Front Immunol ; 13: 991991, 2022.
Article in English | MEDLINE | ID: covidwho-2080153

ABSTRACT

The first line of antiviral immune response in the lungs is secured by the innate immunity. Several cell types take part in this process, but airway macrophages (AMs) are among the most relevant ones. The AMs can phagocyte infected cells and activate the immune response through antigen presentation and cytokine release. However, the precise role of macrophages in the course of SARS-CoV-2 infection is still largely unknown. In this study, we aimed to evaluate the role of AMs during the SARS-CoV-2 infection using a co-culture of fully differentiated primary human airway epithelium (HAE) and human monocyte-derived macrophages (hMDMs). Our results confirmed abortive SARS-CoV-2 infection in hMDMs, and their inability to transfer the virus to epithelial cells. However, we demonstrated a striking delay in viral replication in the HAEs when hMDMs were added apically after the epithelial infection, but not when added before the inoculation or on the basolateral side of the culture. Moreover, SARS-CoV-2 inhibition by hMDMs seems to be driven by cell-to-cell contact and not by cytokine production. Together, our results show, for the first time, that the recruitment of macrophages may play an important role during the SARS-CoV-2 infection, limiting the virus replication and its spread.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Epithelium , Lung , Macrophages , Cytokines , Antiviral Agents
2.
Biomedicines ; 10(10)2022 Oct 01.
Article in English | MEDLINE | ID: covidwho-2065697

ABSTRACT

Chemerin is one of the specialized pro-resolving mediators that participate in the early phase of inflammation and contribute to the initiation of the pro-resolving response. There is a paucity of data regarding the time course of chemerin during acute infections. We aimed to evaluate the sequence of inflammatory responses in the acute COVID-19 phase throughout onset and resolution of inflammation. We evaluated changes in selected biomarkers in COVID-19 survivors on the 7-day and 28-day follow up. Chemerin was lower in patients with baseline moderate/severe disease at day 7 compared with asymptomatic patients and individuals with mild illness (7265 [5526-9448] vs. 8730 [6888-11,058] pg/mL; p = 0.03). Only in patients with moderate/severe disease, but not in those with mild symptoms, were chemerin concentrations decreased one week after infection onset compared with baseline (7265 [5526-9448] vs. 8866 [6383-10,690] pg/mL; p < 0.05) with a subsequent increase on the 28-day follow up (9313 [7353-11,033] pg/mL; p < 0.05). Resolution of inflammation in the group of moderate/severe SARS-CoV2 infection was associated with increasing serum concentrations of chemerin, contrary to pro-inflammatory cytokines and adipokines (pentraxin 3, TNFα, resistin, leptin). A similar pattern of angiopoietin-2 dynamics may suggest signs of enhanced vascularization as a consequence of acute SARS-CoV2 infection.

3.
iScience ; 25(7): 104594, 2022 Jul 15.
Article in English | MEDLINE | ID: covidwho-1895108

ABSTRACT

Recent studies showed that SARS-CoV-2 can infect adult human pancreas and trigger pancreatic damage. Here, using human fetal pancreas samples and 3D differentiation of human pluripotent cells into pancreatic endocrine cells, we determined that SARS-CoV-2 receptors ACE2, TMPRSS2, and NRP1 are expressed in precursors of insulin-producing pancreatic ß-cells, rendering them permissive to SARS-CoV-2 infection. We also show that SARS-CoV-2 enters and undergoes efficient replication in human multipotent pancreatic and endocrine progenitors in vitro. Moreover, we investigated mechanisms by which SARS-CoV-2 enters pancreatic cells, and found that ACE2 mediates the entry, while NRP1 and TMPRSS2 do not. Surprisingly, we found that in pancreatic progenitors, SARS-CoV-2 enters cells via cathepsin-dependent endocytosis, which is a different route than in respiratory tract. Therefore, pancreatic spheroids might serve as a model to study candidate drugs for endocytosis-mediated viral entry inhibition and to investigate whether SARS-CoV-2 infection may affect pancreas development, possibly causing lifelong health consequences.

4.
Front Immunol ; 12: 748097, 2021.
Article in English | MEDLINE | ID: covidwho-1477829

ABSTRACT

The SARS-CoV-2 infection [coronavirus disease 2019 (COVID-19)] is associated with severe lymphopenia and impaired immune response, including expansion of myeloid cells with regulatory functions, e.g., so-called low-density neutrophils, containing granulocytic myeloid-derived suppressor cells (LDNs/PMN-MDSCs). These cells have been described in both infections and cancer and are known for their immunosuppressive activity. In the case of COVID-19, long-term complications have been frequently observed (long-COVID). In this context, we aimed to investigate the immune response of COVID-19 convalescents after a mild or asymptomatic course of disease. We enrolled 13 convalescents who underwent a mild or asymptomatic infection with SARS-CoV-2, confirmed by a positive result of the PCR test, and 13 healthy donors without SARS-CoV-2 infection in the past. Whole blood was used for T-cell subpopulation and LDNs/PMN-MDSCs analysis. LDNs/PMN-MDSCs and normal density neutrophils (NDNs) were sorted out by FACS and used for T-cell proliferation assay with autologous T cells activated with anti-CD3 mAb. Serum samples were used for the detection of anti-SARS-CoV-2 neutralizing IgG and GM-CSF concentration. Our results showed that in convalescents, even 3 months after infection, an elevated level of LDNs/PMN-MDSCs is still maintained in the blood, which correlates negatively with the level of CD8+ and double-negative T cells. Moreover, LDNs/PMN-MDSCs and NDNs showed a tendency for affecting the production of anti-SARS-CoV-2 S1 neutralizing antibodies. Surprisingly, our data showed that in addition to LDNs/PMN-MDSCs, NDNs from convalescents also inhibit proliferation of autologous T cells. Additionally, in the convalescent sera, we detected significantly higher concentrations of GM-CSF, indicating the role of emergency granulopoiesis. We conclude that in mild or asymptomatic COVID-19 convalescents, the neutrophil dysfunction, including propagation of PD-L1-positive LDNs/PMN-MDSCs and NDNs, is responsible for long-term endotype of immunosuppression.


Subject(s)
Antibodies, Neutralizing/blood , COVID-19/complications , Myeloid-Derived Suppressor Cells/immunology , Neutrophils/immunology , SARS-CoV-2/immunology , Adult , Antibodies, Viral/blood , Asymptomatic Infections , CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , COVID-19/pathology , Cell Proliferation , Female , Granulocyte-Macrophage Colony-Stimulating Factor/blood , Humans , Immunocompromised Host/immunology , Immunoglobulin G/blood , Lymphocyte Activation/immunology , Male , Middle Aged , Post-Acute COVID-19 Syndrome
SELECTION OF CITATIONS
SEARCH DETAIL